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ABSTRACT: Organic micropollutants (OMPs) in the aquatic
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related processes and the resulting TPs, by combining an
automated photodegradation setup and HRMS and advanced
NTA approaches. Four pharmaceuticals were successfully degraded in a case study, and 38 NTA features were effectively prioritized
from complex sample matrices and identified as TPs through complementary approaches developed in this work. The identified TPs
were structurally diverse and mostly novel. Semi-quantitation suggested that the TPs explained a relevant part of the parent removal.
The developed workflows are a step toward systematic comprehensive analysis of transformation processes in water and beyond. The
openly available data-processing tools and data enhance transformation data repositories and algorithms and support NTA studies in
general.
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B INTRODUCTION

Organic micropollutants (OMPs), such as pharmaceuticals and

formation of reactive species, respectively. The nonselectivity
of OH radicals and unpredictable interference of NOM can
lead to the formation of various TPs with unknown

their transformation products (TPs), are pervasive in aquatic
environments, with detected concentrations of ng/L to ug/L in
drinking water sources.”” Advanced oxidation processes
(AOPs) are applied for OMP removal in treatment of
~ and drinking water.”” A commonly applied
technique for the latter is UV photolysis.” "' The UV emission
bands align with the dissociation energies of, e.g., double bonds
in organic compounds, facilitating their direct photolysis upon
UV light absorption. Additionally, indirect photolysis can occur
with reactive OH radicals formed when UV light interacts with
purposely added reactants such as hydrogen peroxide (H,0,)
or ozone.”'”" Natural organic matter (NOM) in water
sources can inhibit or promote OMP removal,"*™'® e.g, by
shielding UV light and scavenging OH radicals in AOPs or the

wastewater3
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toxicity.'”'’~** Understanding degradation pathways and
systematically identifying TPs are therefore crucial for
assessing environmental fate and ultimately their risks.

The identification of unknown or suspect OMPs in complex
environmental matrices is currently typically performed with

liquid chromatography coupled to high-resolution mass
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Figure 1. patRoon-based non-target analysis workflow to elucidate TPs. Underlined steps are novel or extended in this work. The box colors of
steps D, E and I, J are reused in subsequent figures to identify these steps. Gens: number of prediction generations.

spectrometry (LC-HRMS). This offers exceptional sensitivity
and the ability to identify compounds based on accurate mass,
isotopic patterns, and characteristic molecular fragments.”*
LC-HRMS is combined with non-target analysis (NTA) to
screen and identify large numbers of chemicals.”* However,
elucidating TPs with NTA presents several complications.
First, multiple TPs can arise from a single-parent compound,
while the same TP may be formed from multiple parents.”>*°
Second, TPs generally have low concentrations, like their
parents, and may be less sensitive to applied detection
techniques than their parents. Third, the unavailability of
reference standards hinders analytical method development
and TP identification. Finally, data interpretation is often
complex and tedious. The absence of MS library data for most
TPs requires manual elucidation, which involves reviewing
chromatograms, mass spectra, assigning identification con-
fidence’” and possible pathways, and interpreting intensity
trends across experimental conditions for numerous (often 100
s—1000 s) TP candidates, as performed by, e.g., Gulde et al?®
To alleviate some of these difficulties, the open-source software
patRoon””? was recently enhanced with functionality for TP
screening’’ such as automatically obtaining and combining
suspect data from various prediction and library sources,
integrating approaches to recognize TPs and link these to
corresponding parents, and improved identification of TPs that
are typically absent in open data sources.

The primary objective of the present work was to establish
and showcase a comprehensive analytical and computational
workflow to systematically perform photodegradation experi-
ments and elucidate the resulting TPs. Four environmentally
relevant and light-sensitive pharmaceuticals (flecainide,
metoprolol, sulfamethoxazole, and phenazone) were selected
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for automated photodegradation experiments using the
“TooCOLD” setup.””>* This setup was adapted to perform
UV degradation experiments with and without H,O, and
NOM and coupled to LC-HRMS for direct postdegradation
analysis. NTA was applied to investigate TP formation using
open-source patRoon-based workflows that enhance the
prioritization, elucidation, and reporting of TP data.

B MATERIALS AND METHODS

Materials. Flecainide acetate salt (>98%), metoprolol
tartrate (>99%), sulfamethoxazole (>98%), and phenazone
(>97.5%) were purchased from Sigma-Aldrich (Zwijndrecht,
The Netherlands). Further details are in Section S1.1. Water
was obtained from a Dutch drinking water treatment facility on
May 16, 2022, which uses Lake IJssel as a source (see Table S2
for water characteristics). The sampling point was after rapid
sand filtration and before the UV/H,0, treatment. The water
was subsequently filtered (GD/X, 25 mm, 0.45 gm, Whatman)
and used to imitate natural background in degradation
experiments from, e.g, dissolved organic matter and salts
(hereafter referred to as “NOM”).

Instrumentation. Photodegradation experiments were
automated with the “TooCOLD” setup.’*>* In short, the
TooCOLD setup is a fully automated system to study light-
induced degradation and consists of automated sample
introduction, an irradiation source with dedicated optics, and
a light-exposure cell based on a liquid-core waveguide. This
setup was adapted for the current study to reduce sample
carryover, improve sample recovery, and include the use of UV
(characteristic wavelength 254 nm) and H,0, for sample
degradation purposes (see Section S1.2). An LC-HRMS
system was coupled for direct chemical analysis after
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degradation and consisted of an Acquity ultra-high-perform-
ance LC (Waters, Etten-Leur, The Netherlands) and a maXis
4G Q-TOF upgraded with an HD collision cell and equipped
with an electrospray ionization source operating in positive
mode (Bruker Daltonics, Leiderdorp, The Netherlands), see
Section S1.3 for further details. The analytical repeatability was
<5.0% standard error for all parent compounds, see Section
S1.4.

Degradation Experiments. The experiments were
performed with mixtures of parent pharmaceuticals to simulate
cooccurrence in environmental conditions. The degradation
experiments occurred by 2 h exposure to (1) UV, (2) UV and
10 mg/L H,0,, or (3) UV, 10 mg/L H,0,, and NOM. The
experiments were performed with initial parent concentrations
of 25 pg/L, 75 ug/L, and 150 ug/L (n = 3). The relatively high
concentrations compared with environmental occurrences
were chosen to ensure comprehensive detection of potentially
low-abundant TPs. Single-parent experiments were performed
at 150 pug/L (n = 2) and were used to aid the identification of
parent-specific TPs. In addition, mixture experiments were
repeated with a disabled light source (“dark controls”) at 150
ug/L (n = 2) to assess the effects of adsorption processes and
parent removal solely by H,0,/NOM. The experiments were
repeated with 0 h exposure, which was used to correct for
parent removal and perform NTA blank subtraction.

Target Analysis. Target analysis was performed to
quantitate the loss of parent pharmaceuticals and to semi-
quantitate the formation of the TPs with (tentatively) assigned
structure and available standards. The LC-HRMS data were
processed with TASQ 2021 (Bruker Daltonics, Leiderdorp,
The Netherlands). Quantitation of parent compounds was
performed on the naturally occurring M + 2 isotope (i.e., the
agglomeration of isotopes with equal nominal mass distanced
two units away from the monoisotopic mass); the low
abundance (<6%) allowed accurate quantitation of relatively
high parent concentrations by avoiding detector saturation.
The TPs were quantified by the MS signals from the
monoisotopic mass. The analytes were confirmed by retention
time (+0.1 min), accurate m/z (+5 mDa), and good isotopic
pattern match (mSigma <100, calculated by the SigmaFit
algorithm™ by TASQ, only performed if the intensity of the
monoisotopic mass was below the detector saturation). The
calibration curves ranged from 12.5 to 250 ug/L (parent
compounds) and 1.2—150 pug/L (TPs), which were prepared
by serially diluting the highest concentration standard in steps
of two. The calibration lines for each analyte were ensured to
have >S5 points, an R? of >0.99, and residuals of <30%. The
significance of differences between 0 h and 2 h exposure and
among degradation conditions was assessed with a pooled t-
test assuming equal variances (p < 0.05).

Transformation Product Screening. The formation of
TPs was investigated with R*® using patRoon 2.3.3-based NTA
workflows,””™*"” which were extended with various novel
steps (underlined in Figure 1) as described below. The code
associated with this manuscript and a detailed overview of all
software tools are available from ref 38.

Raw LC-HRMS data were first pretreated by internal m/z
recalibration and centroiding and subsequently exported to the
mzML format® via DataAnalysis (Figure 1A). Next, features
were detected, grouped, and aligned across samples via
OpenMS40 (Figure 1B). The features were then prioritized
with common patRoon functionality, including blank sub-
traction of 0 h experiments and regression analysis (Figure
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1C). A linear relationship was assumed between the three
initial parent concentrations tested in the mixture samples and
the TP abundance (i.e., peak intensity). This is limited to TPs
that originate from the studied parents, as the concentration of
background chemicals across concentration points was
unaltered. Thus, only features with a significant correlation
were kept, yet with tolerant constraints to accommodate TPs
with small linear deviations due to, e.g, detector or reactant
saturation or higher-order kinetics. Further prioritization
details and constraints are described in Section S1.5.

The prioritized features were elucidated by a thorough TP
screening workflow. Several prediction algorithms and
literature sources were aggregated to obtain TP suspects with
known structure (“structure suspects”) or known formula
(“formula suspects”), see Figure 1D,E and details in Section
S1.6. Features that matched with a structure suspect were not
further considered for formula suspect screening, as the
structural data from the former allows more confident feature
identification. The features that matched with structure
suspects, formula suspects, or without any match (“unknowns”,
Figure 1F) were each linked with parent features with the TP
componentization functionality of patRoon (Figure 1G). Links
were removed for TP features that were present in any of the
single-parent experiments for other parents, unless the
intensity was five times less compared to the mixture
experiments or it was also present in the corresponding
single-parent experiment.

Several steps were then performed to annotate the suspects
(Figure 1H). Feature MS and MS” data were automatically
obtained with patRoon via mzR*' and postprocessed with a
background removal algorithm developed in this work and
patRoon filtering functionality (detailed in Section S1.7). The
suspect hits were then subjected to formula annotation with
GenForm"* and compound annotation with MetFrag"’ using a
compound database from the suspects, see Section S1.8.
Identification confidence levels”” were assigned automatically
and refined with reference standards where possible (further
detailed in Section S1.9; Figure 1K).

The annotation workflow for unknowns included adjust-
ments to accommodate a broad range of possible candidates.
Compound candidates were obtained from the PubChem
database,*** which, given its large size (119 million unique
chemicals as of August 2024), maximizes the search range.
First, compounds were filtered (Figure 11 steps 1-2) to
exclude candidates with (1) elements unlikely to be present in
TPs from the investigated parents (Cl, Br, Si, and P) or (2)
unexpected LC elution order relative to the parent (with
considerable tolerance to allow for predictive errors, see
Section S1.10). Next, compound candidates were ranked by
the “TP score”, which was derived from (1) the maximum “fit”
in the parent molecule and vice versa, (2) the maximum
structure similarity with structure suspects, and (3) in silico
annotation similarity (ﬁtcompound, SiMyygpecty AN ANDopounds
respectively, see details in Section Sl.llg. Formula candidates
were similarly ranked by the formula fit and annotation
similarity (fitg, . and anng, ., respectively, see details in
Section S1.11). All ranking metrics were evaluated with suspect
data, and these data were subsequently used to derive
thresholds to eliminate unlikely candidates (see Section
S1.11 and Figure S2). The candidates were then ranked,
removed if below TP score thresholds or outside the top 25,
and manually evaluated (Table S8) to obtain a final selection
with plausible candidates (Figure 11 steps 3—S and Figure 1]
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standard errors between replicates. n.s.: no significant removal (p > 0.0S).

steps 1—2). Structures were proposed for candidates from
formula annotations (Figure 1J step 3) and subsequently
verified and scored by in silico compound annotation, which
used the proposed structures as an input compound database
(Figure 1J step 4). Finally, compound TP scores were
calculated and further used to score TP candidates with
proposed structures (Figure 1] step S).

The workflow then concluded with semi-quantitation of the
identified TPs and automatically reporting all workflow data
(Figure 1L,M). Semi-quantitation was performed to estimate
molar mass balances by postcomparison with standards for TPs
if available, or otherwise patRoon via MS2Quant*® (detailed in
Section S1.12). The data interpretation was aided by (1) the
redesigned general reporting interface of patRoon and (2) a
developed specialized reporting tool that automatically
summarizes key properties and observations for each TP
candidate, such as chromatograms, abundance in samples, and
MS? annotations (detailed in Report R1).

B RESULTS AND DISCUSSION

Degradation of Parent Compounds. The removal of
parent pharmaceuticals (normalized to 0 h exposure) after
exposure to UV, UV and H,0,, or UV, H,0,, and NOM for
the mixture experiments at 150 pg/L (mixy, mixyy, and
mixyyy, respectively), single-parent experiments (singley,
singleyy, and singleyyy, respectively), and dark controls
(mixp, mixpy, and mixpyy, respectively) is summarized in
Figure 2. The highest removal was observed in mixture
experiments for sulfamethoxazole and phenazone (77—88%)
and was similar under all photolytic conditions. The
degradation of flecainide and metoprolol was much lower in
mixture experiments (6—31%). Significantly lower removal for
both parents was observed (p < 0.05) in mixy (6—16%) than
in mixyy and mixgyy (24—31%). The degradation of flecainide
and metoprolol was significantly higher in singley;, when
compared to mixy (p < 0.05, ~ 200% difference), indicating
that other compounds hampered their direct UV photolysis. In
contrast, the opposite was observed for sulfamethoxazole and
phenazone in all treatments and for metoprolol in single;; and
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singleguy (p < 0.0, > 27% difference), suggesting that the
presence of other compounds enhanced degradation. In dark
controls, removal was observed for flecainide in mixpy (22%),
metoprolol in mixpy and mixpyy (9—12%), and sulfamethox-
azole under all conditions (21—32%) but not for phenazone.
The loss of sulfamethoxazole in mixp, i.e., where UV, H,0,,
and NOM were absent, suggests that adsorption occurred
during the 2 h residence time in the degradation cell. Hence,
the actual degradation of sulfamethoxazole may be smaller.
The degradation in mixture experiments at lower initial parent
concentrations (Figure S4) was generally difficult to assess, as
the relatively high variance among replicates often led to
insignificant results or measurements were below quantitation
limits. Nevertheless, the removal of metoprolol in mixyyy was
significantly lower (p < 0.0S) at 25 ug/L versus 75 and 150
ug/L (21%, 28%, and 31%, respectively), suggesting that the
degradation rate of metoprolol was enhanced by increased
initial concentrations.

The high removal of sulfamethoxazole and phenazone by
direct photolysis,"”’ ~* enhanced removal of flecainide and
metoprolol by H,0,,*”° enhanced removal of metoprolol in
the presence of NOM,”' and the enhanced removal of
sulfamethoxazole and other pharmaceuticals in mixtures,”*>>
matches literature findings. However, the significantly
enhanced degradation of sulfamethoxazole and phenazone by
H,0, and NOM reported in the literature®*7**°*75¢ was not
observed in this study. Nevertheless, an exact comparison with
the literature is difficult due to different reactant dosages, initial
parent concentrations, sample matrices, and the unique
geometry of the TooCOLD reaction cell with direct sample
analysis. Regardless, the often significant removal of the
parents demonstrates that the setup was successful in
degrading test compounds under various conditions.

Overview of Non-Target Analysis Results. The key
NTA results for all TP candidates were automatically
summarized to ease data interpretation, see Figure 3 and
Report R1. The obtained NTA data are summarized in Table
1. The next sections describe the NTA results in further detail.
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Figure 3. Example layout of the output from the automated reporting tool developed in this study for one TP of sulfamethoxazole. The complete

report is provided in Report RI.

Detected Features and Feature Prioritization. A total
of 256,784 features (excluding parents) were detected and
reduced to 18,608 by sample grouping and alignment (Figure
4a). Through subsequent prioritization steps, ~99% of these
features were removed, with the largest decrease occurring
through regression analysis (Figure 4a). The remaining 78
features showed a predominantly high correlation with the
initial parent concentration (median R* of 0.88 for features
present at all initial parent concentrations, see Figure SS), yet
included a feature with considerable linearity deviations due to
MS signal saturation (see M150 RS28 2607 in Report R1).
Thus, the prioritization steps employed were highly effective in
isolating features of interest, even in complex sample matrices
with numerous features such as NOM and after the subtraction
of 0 h experiments. Furthermore, the number of features
prioritized automatically was sufficiently low for manual peak
verification (93), and the subsequent manual elimination of
features was limited (16%).
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The presence of the prioritized features mostly overlaps in
all photolytic conditions and in mixture and single-parent
experiments (both 53, see Figures 4a and S6), while a minority
of features were also detected in dark controls (10, see Figure
S6). The discrepancies among degradation conditions are
discussed further in the “Identified transformation products”
section.

Suspect TP Screening. From the 676 structure suspects
and 228 formula suspects, 53 suspects were matched to 27
features, resulting in 67 unique links between the parent, TP
feature, and suspect (see Table 1).

The number of structure suspects across data sources was
similar for all parents (Figure S7), except for the literature
search (LIT) for flecainide, illustrating that environmental
transformations for this compound have been studied less
frequently. Most TP suspects were matched to metoprolol and
sulfamethoxazole. Of all the suspects, most originated from
BioTransformer®” with environmental (BTE) or “allHuman”
(BTH) reactions and LIT (195—284), see Figure 4b. Most of
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Table 1. Overview of All Non-Target Analysis Results

Features

Suspect TP screening

Screening for unknown TPs

Identified TPs

Semi-quantitative mass balance®

Workflow step”
Sample grouped (B)
Prioritized (C)
Total structure suspects (D)
Matched structure suspects (D)
Total formula suspects (E)
Matched formula suspects (E)
Total matched features
Total parent/TP links® (G)
Unknown features (F)
Unknown parent/TP links® (G)
Total compound candidates (I)
Prioritized compound candidates (I)
Total formula candidates (J)
Prioritized formula candidates (J)
Level 1: confirmed structure (K)
Level 2: probable structure (K)
Level 3: tentative structure (K)
With standards (L)
MS2Quant prediction (L)
Total (L)

Total

18,608
78
676"

228°

0—41%
0—41%

MET SMX PHE
218 180 154
35 13 2
83 116 93
1 0 0
14 9 2
45 18 2
26 29 49
28,065 33,704 67,211
0 4 3
144 152 239
0 0 6
0 24 24
0 0 0
17 13 3
5—29% 3-18%°
12-123% 10—75% 4-35%
19-152% 18—59%¢

“See (Figure 1a). bTotal of unique suspects or features. “Unique for each parent, TP feature, and suspect (except unknowns). “Of which one TP
was formed by both sulfamethoxazole and phenazone. “Ratio TP concentration versus parent removal (molar, across experimental conditions).”No
standard available. #Results were mean averaged since the formation of one TP could not be distinguished from its two parents; FLE: flecainide;
MET: metoprolol; SMX: sulfamethoxazole; PHE: phenazone.

unique

CTS
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Figure 4. (a) Feature distributions in UV (U), UV and H,0, (UH), and UV, H,0,, and NOM (UHN) experiments (excluding parents) before/
after the employed prioritization steps. (b, ¢) Overlap of suspects (b) and matched suspects (c) between data sources and unique to the data
source. The data sources are the Chemical Transformation Simulator (CTS), BioTransformer with environmental, or “allHuman” reaction libraries
(BTE and BTH), PubChem (PC), and literature search (LIT).

these (160—242) had one unique source, which demonstrated
the complementarity of these data sources. Only a minority
(16—28) of the suspects from these data sources could be
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matched to features (Figure 4c). This is possibly due to
different transformation mechanisms, which were biological for
BTE and BTH and primarily highly energetic AOP for LIT

https://doi.org/10.1021/acs.est.4c09121
Environ. Sci. Technol. 2025, 59, 3723-3736


https://pubs.acs.org/doi/10.1021/acs.est.4c09121?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c09121?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c09121?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c09121?fig=fig4&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c09121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

Table 2. Prioritization of the Candidates from the Compound and Formula Annotation Workflows for Unknown Features”

Compound candidates

Formula candidates

Prioritization FLE MET SMX
Raw 29,046 28,065 33,704
Element filter 25,881 24,900 30,426
RT filter 12,298 21,341 28,181
fite s 7,102 13,500 1,611
it compound/SiMuspects 2,329 2,006 382
Top 25 per feature 143 175 100
Manual evaluation 0 0 4

PHE FLE MET SMX PHE
67,211 82 27 55 49
61,978 - - - -
56,195 - - - -
48,003 23 11 8 24
4,831 . . .

375 1 0 0 6

3 1 0 0 6

“FLE: flecainide; MET: metoprolol; SMX: sulfamethoxazole; PHE: phenazone.
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Figure 5. Overview of candidate TPs for sulfamethoxazole (identification confidence level 3 or better). The box color signifies whether the
candidate was obtained by structure suspect screening (blue) or screening for unknown TPs with the compound annotation workflow (green).
Each candidate is named by a unique TP identifier that refers to Report R1. The yellow shades in the TP structures represent additions or changes
in atoms or bond order compared to the parent. Box annotations: CTS, BTE, LIT: suspect from Chemical Transformation Simulator,
BioTransformer with environmental reaction library and literature, respectively; U, UH, UHN: present in mix experiments exposed to UV, UV and
H,0,, and UV, H,0,, and NOM, respectively; S: present in any of the single-parent experiments; RT: retention time (minutes); IDL: identification

confidence level, see Section S1.9.

(Table S13). Furthermore, nearly all TPs from LIT were only
tentatively identified and may occasionally include errors (see
Table S13). Thus, the use of these data sources indicates the
need for suitable prioritization and identification workflows to
exclude false positives. Relatively few suspects were from the
Chemical Transformation Simulator’® (CTS) and PubChem
transformations®”~®" (PC). This is likely a result of relatively
small and specialized reaction libraries and an incomplete
database, respectively. The structure suspect screening results
demonstrate the complementarity of using different predictive
(CTS/BTE/BTH) and literature (PC/LIT) approaches based
on both biological and abiotic processes. Furthermore, the
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observed gap between predictive and literature data sources
indicates the need to improve prediction algorithms and TP
information in open resources.

Screening for Unknown TPs. The 51 features without a
suspect match were linked into 131 unique parent/TP pairs
(see Table 1). Subsequent feature annotation resulted in
~30,000—70,000 compound and 27—82 formula candidates
for the unknowns linked to each parent. These were reduced
by 1—-2 orders of magnitude through the various prioritization
steps developed in this study (Table 2) which enabled further
manual processing. For 6 out of 7 formula annotation
candidates, a structure could be proposed manually, and in
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Figure 6. Composition of parent removal explanations from semi-quantitated TPs with standards or MS2Quant predictions. The numbers on top

of the bars represent the parent removals (%). n.s.: no significant parent removal;
% the value for MS2Quant (123%) is cutoff; *: formation of SuS-SMX-M99-1 (1—17%) was excluded as it

phenazone in mixture experiments;

!; total formation of aniline from sulfamethoxazole and

could be formed simultaneously with other TPs in the same transformation reaction.

total, 14 candidates could be assigned to unknown features
(further discussed in the next section).

The unique parent chemical properties seemed to influence
the effectiveness of the different prioritization steps. For
instance, the RT filter was most effective for flecainide and led
to ~50% reduction, since its relatively high log P (4 S versus
1.2—1.6 for other parents, calculated with rcdk)®* could be
more easily discerned from log P values of TP candidates. The
thresholds for the parent similarity metrics (see Figure S2)
decimated compound candidates for sulfamethoxazole because
of the presence of sulfur and phenazone due to its compact
structure with a pyrazoline ring.

The selected annotation candidates were diverse and
complementary to the suspect screening results. Most
candidates had relatively low structural similarity to suspects
(Figure S8). The selection also included candidates with low
parent similarity but high identification confidence and high
parent similarity but poor annotation confidence (e.g., UnF-
PHE-M149-1 and UnC-PHE-M219-1, respectively, see Report
R1). The latter also shows successful prioritization of features
without MS? data, a typical phenomenon for features with low
intensity.

Overview of Identified Transformation Products. In
total, 38 features were matched with 66 structures and two
formulas, resulting in 81 unique feature/candidate TP pairs
(hereafter “TP candidates”). These are detailed in Report R1,
and their identification levels®” are summarized in Figure S9.
Confirmation with reference standards (see Table S10) led to
the assignment of four TP candidates with level 1 (with one
structure assigned to two parents), and two candidates
matched well with standards but could not be distinguished
from structurally close isomeric suspects (level 3a). Thirty-one
of the remaining TP candidates were assigned a tentative
structure (level 3b-d). MS? library spectra were only available
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for candidates UnC-SMX-M140-1 and UnF-PHE-M149-1, and
candidates SuS-SMX-M110-1, UnC-PHE-M375-1, and UnF-
PHE-M150-1 matched well with in silico MS* annotation but
were disproved by reference standards. This highlights the
need for reference standards to confirm TP candidates. Below,
the discussion is limited to TP candidates with identification
level 3 or better for metoprolol, sulfamethoxazole, and
phenazone due to the large number of candidates assigned
to these parents.

TP candidates could be assigned for all four parent
pharmaceuticals (Figures S and S10). The 1S candidates for
sulfamethoxazole were structurally diverse (Figure S), two of
which had an identification confidence level 1 (SuS-SMX-
M94-1, aniline and SuS-SMX-M99-1, 3-amino-5-methylisox-
azole) and one level 3a (SuS-SMX-M174-4, sulfanilic acid).
The candidates were primarily variations of substructures with
the benzoic moiety, yet one TP candidate was a substructure
with a five-membered azole ring (SuS-SMX-M99-1). Six
candidates were novel, two of which stemmed from predictions
(BTE) and four from screening for unknown TPs. For
phenazone, two out of five TP candidates were assigned level 1,
and all TPs resulted from the opening or removal of the five-
membered ring (Figure $10a). Aniline (SuS-PHE-M94-1), also
assigned to sulfamethoxazole (as SuS-SMX-M94-1), was the
only TP candidate from the literature; one was found from
CTS predictions and the remaining three from screening for
unknown TPs. The TPs of metoprolol were mostly with small
elemental changes, resulting in many isomeric TP candidates
with tentative structure assignments at best (see Figure S10b).
Nevertheless, one TP candidate (SuS-MET-M226-3, 1-amino-
3-[4-(2-methoxyethyl)phenoxy]propan-2-ol) matched well
with a reference standard and had confidence level 3a. All
assigned structures originated from the literature. In addition, a
novel metoprolol + H,0, formula suspect calculated with
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metabolic logic was assigned to two features (detailed in
Section $2.6). For flecainide, three TP candidates were found
(see Figure S10c), but with poor identification confidence
(level 4/5) due to the absence of MS? data. However, the TPs
resulting from the loss of a C,HF; group (SuS-FLE-M333-1
and SuS-FLE-M333-2) may be plausible, since both isomers
were predicted by all three algorithms, could be linked to two
different features by accurate m/z (M333_R474 5934 and
M333_R393_6915), and were identified in single-parent
experiments.

Most of the features from the TP candidates were found in
single- and mixed-parent experiments and all treatments,
except for sulfamethoxazole TPs (see Figures 5, S10 and S11).
The features that were not omnipresent were often close to
detection limits or workflow thresholds. This might explain
their scattered observations over the experiments and
complicates the qualitative assessment of the influence of
experimental conditions on transformation pathways. Regard-
less, for sulfamethoxazole, most TP candidates were detected
in all treatments except in the presence of NOM. This could
result from the NOM matrix that partially suppressed HRMS
detection or indicate alternative transformation pathways, since
the removal of sulfamethoxazole in NOM appeared unaffected
(see Figure 2). In addition, the aforementioned metoprolol +
H,0, TP candidate was detected only in experiments with
H,0,, as expected. Only one TP candidate, metoprolol + O,
was found in dark controls.

Semi-Quantitative Mass Balances. Molar mass balances
were estimated for the TPs selected in the previous section by
semi-quantitation, see Figure 6, Table S11 and Table SI2.
However, the results discussed here should be considered
indicative due to the tentative structure assignment for most
TPs, the prediction errors of MS2Quant that roughly cover a
factor of 5,*° lack of matrix effect corrections, and other
limitations discussed in Section S1.12. A large part of the
removal of flecainide in mixture experiments exposed to UV
(42%) appeared to be explained by SuS-FLE-M147-1 (see
Table S12), while removal in other experiments was left mostly
unexplained (<5%). The excess of explained removal for
metoprolol in mixture experiments exposed to UV (total value
~150%) was likely due to the low parent removal (6%) which
complicates accurate quantitation. The explained removal for
other experiments was lower (19—36%), and single-parent
experiments exceeded mixture experiments considerably (36%
vs 19%) when treated with UV, H,0,, and NOM. The
explained removal for sulfamethoxazole and phenazone was
similar across conditions and higher in experiments with single
parents than mixtures (67—78% vs 10—27% and 34—39% vs
4—13% for sulfamethoxazole and phenazone, respectively).
The transformation into aniline (SuS-SMX-M94-1/SuS-PHE-
M94-1) appeared lower in single-parent experiments (2—7% vs
10—15%), but since aniline was formed from sulfamethoxazole
and phenazone, this complicates the assessment of the mass
balance in mixture experiments. The discrepancies between
single-parent and mixture experiments suggest that trans-
formation pathways for metoprolol, sulfamethoxazole, and
phenazone were altered in the presence of other OMPs. The
single TP candidate detected in dark controls exposed to H,O,
and NOM (metoprolol + O) only explained a very minor
fraction of the metoprolol removal (<0.1%). Despite the
uncertainties in the prediction of TP concentrations, the semi-
quantitative mass balances mostly fall within 100%, and a
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relevant fraction of the removal could be explained by the
identified TPs for most experiments and parents.
Limitations and Future Perspectives. This work
demonstrated an approach with automated sample introduc-
tion, degradation, LC-HRMS analysis, and thorough NTA
screening and prioritization workflows to degrade selected
pharmaceuticals under various photolytic conditions and
elucidate the resulting TPs. The 81 TP candidates were
structurally diverse, of which 45 were novel, 33 could be
identified with a tentative structure (level 3), and 4 with a
confirmed structure (level 1). The screening for unknowns, an
approach developed in this work, successfully prioritized 14
out of the 81 TP candidates, including 4 with poor or no MS?
data. Semi-quantitation of the TPs indicated only partially
complete mass balances under all studied conditions for all the
parent compounds, and out of the 78 prioritized features, a
considerable number remained without (tentative) structure
assignment (20) or were unrecognized by any of the TP
screening approaches (40). Part of the “missing” TPs may be
undetected by the applied analytical methodology or due to
low abundance or MS sensitivity, which can vary significantly
compared to parents.”>~*° For example, ~40% of the features
were absent in the experiments with the lowest initial parent
concentration. The presence of salts and complex organic
matter in the NOM experiments could suppress LC-HRMS
detection, although this was not observed for the parents, and
most of the TPs were also detected in NOM. The NTA
workflow may also yield false negatives. For instance, features
were prioritized with only a simple linear relationship between
intensity and parent concentration (albeit with tolerant
constraints). More sophisticated models might be required to
prioritize TPs that excessively deviate from this linearity, e.g,,
when parent concentrations are sufficiently high to induce
higher-order kinetics or a saturation of reactants. Furthermore,
the thresholds utilized for screening of unknown TPs could
result in a minority of false negatives (see Section S1.11) and
might exclude TPs with highly dissimilar structural properties
compared to their parent and suspect TPs thereof. In addition,
the annotation workflows excluded candidates with additional
incorporated halogens, which could be of interest for, e.g,
certain compound classes or saline environments.”” ="’ Never-
theless, relaxing the stringent criteria applied here may
drastically increase the number of tentative TPs for manual
review, considerably increasing the manual workload. Current
limitations in algorithms for feature detection’'~"* ultimately
necessitate manual review to eliminate false positives. Thus, for
studies with a larger number of parents (e.g,, 10 s—100 s), the
inclusion of additional prioritization strategies may be
necessary in the future to eliminate features outside the
NTA chemical space,””* with low estimated identification
levels,”®”” predicted concentrations, or environmental tox-
icities®”” or poor chromatographic peak quality metrics.”
Several adjustments to this methodology can aid future
research to further elucidate the transformation pathways of
the OMPs studied here and beyond. The degradation setup
could be improved with higher UV transmission (see Section
S1.2), which may shorten degradation times, and the
intensified conditions could reveal TPs with otherwise low
abundance. In addition, experiments with increasing exposure
times could be performed to obtain time profiles of TPs, which
could reveal more of the intermediate TPs, allowing a more
detailed study of transformation pathways and kinetics and
potentially strengthening the proof of parent/TP relationships.

https://doi.org/10.1021/acs.est.4c09121
Environ. Sci. Technol. 2025, 59, 3723-3736


https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c09121/suppl_file/es4c09121_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c09121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

Advanced analytical techniques can be applied to further
improve the detection and identification of TPs with diverse
physicochemical properties, such as large volume injection
with online SPE, orthogonal chromatography with HILIC,*’
complementary MS ionization techniques and MS® techni-
ques,”' ™ and ion mobility coupled to HRMS to enhance
analyte separation and identification.** Moreover, adjustment
of mobile phase pH and application of negative ionization MS
could improve the detection of acidic TPs, which ionize
differently than the predominantly basic parents studied here.
Finally, more standards could be acquired or synthesized for
dedicated target analysis to improve TP identification
confidence and quantitation and allow more accurate
prioritization and risk assessment of the identified TPs.

The large number of TPs identified for only four OMPs in
this work underscores the potential relevance of TPs to the
environment. Furthermore, the results suggest that parent
removal and transformation pathways are influenced by the
presence of other OMPs and possibly by NOM, emphasizing
the importance of a relevant chemical background in
degradation experiments. The approach demonstrated in this
work enables researchers to systematically perform compre-
hensive transformation studies and identify TPs in complex
samples and helps to move beyond sole characterization of
parent chemicals in environmental monitoring, fate studies,
optimization of water treatment processes, subsequent risk
assessment, and chemical registration such as REACH.®*® With
relatively simple hardware modifications, it is envisioned that
other types of degradation could be studied, such as ozonation
and chlorination in water treatment and natural attenuation by
solar irradiation in surface waters. Furthermore, the setup
allows direct LC-HRMS measurements after a degradation
experiment, consequently allowing elucidation of short-lived
TPs that are likely missed with “conventional” offline
experiments.*® The demonstrated workflows are not limited
to water treatment processes, as studied here. They can be
easily adopted to study other degradation processes in water
treatment or the environment and other research domains such
as food and art research. This was, for example, recently
demonstrated for food ingredients (vitamins) and natural and
synthetic dyes.””>**

The presented data processing workflows are expected to be
widely applicable for non-target analysis studies. For instance,
the approaches to prioritize and identify unknown TPs,
perform semi-quantitative mass balances, and automatically
report all workflow data can be used separately or in different
combinations and do not rely on the TooCOLD degradation
setup or experiments with increasing parent concentration.
This work demonstrated the effectiveness of patRoon to easily
aggregate TP suspects from various sources (even from
unrelated pathways) to increase the numbers of detected and
identified TPs. The data processing tools developed in this
work are openly available and are currently being integrated
within patRoon, which further assists in providing FAIR data
to the community.”® Consequently, broader adoption could
increase the availability of TP data to enhance openly available
TP libraries and provide insights to improve prediction
algorithms, thereby closing the gap between both that was
observed in this study. In addition, the new data can enhance
MS? libraries and therefore assist future TP identifications in,
e.g., future environmental monitoring studies. The TPs
confidently identified in this work have been submitted to
the PubChem transformation database®’ and MassBank
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Europe,”” and we hope that future users will consider doing
the same.
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